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Abstract—In this work, we present IDD-CRS, a large-scale
dataset focused on critical road scenarios, captured using Ad-
vanced Driver Assistance Systems (ADAS) and dash cameras.
Unlike existing datasets that predominantly emphasize pedestrian
safety and vehicle safety separately, IDD-CRS incorporates both
vehicle and pedestrian behaviors, offering a more comprehensive
view of road safety. The dataset includes diverse scenarios, such
as high-speed lane changes, unsafe vehicle approaches to pedes-
trians and cyclists, and complex interactions between ego vehicles
and other road agents. Leveraging ADAS technology allows us to
accurately define the temporal boundaries of actions, resulting
in precise annotations and more reliable safety analysis. With
90 hours of video footage, consisting of 5400 one-minute-long
videos and 135,000 frames, IDD-CRS introduces new vehicle-
related classes and hard negative classes, establishing baselines
for action recognition and long-tail action recognition tasks. Our
benchmarks reveal the limitations of current models, pointing
toward future advancements needed for improving road safety
technology.

I. INTRODUCTION

Road safety is an increasingly critical issue around the
globe, especially on unstructured roads. The growing number
of vehicles on the road, coupled with the complexity of modern
transportation systems, has led to a surge in accidents and
near-miss incidents. Road safety efforts focus on preventing
accidents and mitigating risks for all road users, including
pedestrians, drivers, cyclists, and motorcyclists.

While numerous studies and datasets have been avail-
able to address road safety, most have prioritized pedestrian
safety [1] [2] or ego-driver behavior [3]. These datasets
typically focus on capturing actions related to the ego vehicle
like right/left lane change, U-turn, etc., or on the behav-
ior of road agents concerning the ego-vehicle like yielding,
cutting, overspeeding etc. [4] This narrow focus limits the
understanding of the broader interactions that occur on the
road, particularly the risky behaviors of vehicles. Observing
a vehicle changing lanes, a pedestrian appearing, or a car in
front does not automatically indicate a safety issue. The real
risk arises when these road agents are close to the ego-vehicle.
Existing datasets fail to capture this crucial aspect. Human
judgment naturally assesses safety by evaluating the distance
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Fig. 1: Inside view from our car installed with a DDpaiX2
RGB Dash-cam and an Advanced Driver Assistance System
(ADAS). The ADAS system comprises (i) a camera installed
inside on a windshield and monitoring the road ahead of the
vehicle, and (ii) a small display with a buzzer to provide audio
and visual alerts to the driver.

between road agents and the ego-vehicle. To address this gap,
we introduce a dataset IDD-CRS designed to capture critical
road scenarios where accidents can happen if the driver is not
precocious. This dataset emphasizes pedestrian safety while
also addressing complex ego-vehicle behaviors, such as high-
speed lane changes, close encounters with other road agents,
and instances of unsafe following distances. Additionally, the
dataset includes normal driving classes, which enhance its
diversity and provide a valuable baseline, enabling models to
better distinguish between critical and non-critical scenarios,
thereby improving robustness. To the best of our knowledge,
our dataset is the first to provide a comprehensive class for
pedestrian, vehicle, normal driving, and ego vehicle behavior,
specifically incorporating unsafe distances.

We used an ADAS to pinpoint and measure the exact
timing of important road events. Unlike existing datasets
that rely on manual annotations—which can be inconsistent
and inaccurate—ADAS gives precise start and end times
for these actions. This helps ensure our dataset accurately
captures critical safety moments on the road. We have estab-
lished benchmarks for action recognition and long-tail action
recognition on the IDD-CRS dataset using existing popular
models for these tasks. Additionally, we have identified the
limitations of current methods and provided insights for future
improvements.



II. RELATED WORK

A. Exisiting Datasets

In recent years, the study of driver and pedestrian behav-
ior [5] has gained significant attention due to its role in col-
lision prevention [6] and road safety [7]. Behavior prediction
[3] focuses on anticipating driving actions like turns, acceler-
ation, merging, and braking, as well as driver behaviors [4]
such as overspeeding, overtaking, cut-ins, and rule violations.
While much of the research has focused on pedestrian-vehicle
interactions [1], [8], vehicle-to-vehicle interactions are equally
important for ensuring overall road safety. Multiple datasets
exist that cater to pedestrian systems [2], including both real-
world and synthetic data [9], with some using simulators [10],
[11] for scenario generation. Given the critical nature of traffic
safety events, collecting real data is challenging and resource-
intensive, leading to various methods for scenario generation
by editing existing videos—such as introducing new agents or
modifying the trajectories of existing ones [12].

Some studies have resorted to collecting accident data from
sources like YouTube [13], while others focus on specific
driving agents, primarily pedestrians, at locations like inter-
sections. However, these datasets often lack detailed temporal
annotations that indicate when these agents are actually in
danger. Instead, they assume that the presence of any traffic
agent in the frame demands precautionary action. In reality,
any road user, including vehicles, can pose safety risks, and
danger is not constant throughout a scene. ADAS addresses
this gap by issuing alerts when traffic agents are genuinely at
risk.

B. Action recognition

Action recognition in video has garnered significant atten-
tion, driven by its wide range of applications in surveillance,
autonomous driving, and human-computer interaction. Tra-
ditional approaches often rely on extracting spatio-temporal
features using 3D convolutional neural networks (C3D) [14]
or Inflated 3D Convolutional Networks (I3D) [15] to capture
motion patterns across frames. More recent methods have
explored using architectures like SlowFast [16] and X3D [17],
which effectively balance the trade-off between accuracy
and computational efficiency by processing videos at dif-
ferent temporal resolutions. Attention mechanisms, including
Transformer-based models such as Motionformer [18], have
also been integrated to capture long-range dependencies and
improve action recognition in complex scenes. Despite these
advancements, challenges remain in recognizing actions in
real-world, long-tail scenarios, where certain activities are rare
and models need to generalize effectively across varied and
dynamic environments.

C. Long-tail Methods

Addressing long-tail recognition typically involves two
strategies: re-weighting and re-balancing. Re-weighting meth-
ods focus on penalizing the misclassification of tail class
samples by adjusting logits [19] or weighting [20] the loss
according to class size or sample difficulty. Other techniques

Actor

Actor

PCW HMW

LDW FCW NOA

Actor

Alert Display

Pedestrian /
Bicyclist

Vehicle

Fig. 2: Alerts triggered by ADAS: Pedestrian Collision
Warning (PCW) alerts the driver to potential collisions with
pedestrians/bicyclists; Forward Collision Warning (FCW)
indicates when the vehicle is too close to the one in front;
Lane Departure Warning (LDW) notifies if the vehicle
drifts out of its lane; Headway Monitoring Warning (HMW)
warns of possible collisions with vehicles ahead; No Obstacle
Alert (NOA) signifies no detected critical events. These alerts
are crucial for enhancing driving safety by identifying and
mitigating potential hazards.

like label smoothing [21], enforcing separation between class
embeddings [22], and combining predictions from experts spe-
cialized in tail classes are also employed. These methods aim
to improve model performance on underrepresented classes by
adjusting how errors are penalized or how class predictions are
handled.

Re-balancing approaches, however, focus on adjusting the
training data distribution rather than the loss function. This is
often done through class-equalizing feature banks [23] or equal
sampling from each class, with a standard practice of first
using instance-balanced sampling followed by class-balanced
sampling [24]. Augmentations further enhance tail class di-
versity by combining samples with nearby class prototypes,
expanding tail classes through feature clouds, or pasting tail
objects onto head class backgrounds [25]. Additionally, con-
trastive learning [26] improves representations, while video-
specific techniques like LMR [27], Mixup [28] and Frames-
tack [29] mix up samples temporally during training.

III. PROPOSED DATASET

A. Sensors

1) Advance Driving Assistance System (ADAS): In this
work, the camera-based proprietary ADAS was utilized. The
system is capable of detecting the presence of objects (sta-
tionary as well as moving) with type as well as their distance,
including GPS coordinates around the vehicle, and accordingly
sends visual and audio alarms. These alerts are given to the
driver in the output unit if the vehicle is detected to be on
an unsafe path (like lane departure), unsafely close to another
vehicle/pedestrian/bicycle, etc. Based on these visual or audio
alerts, the driver can potentially take corrective actions in



TABLE I: Comparisons of existing datasets based on action categories with respect to the ego vehicle, where the IDD-CRS
dataset stands out for having precise temporal annotations from ADAS. Clip lengths in IDD-CRS are determined by
the speed of the ego vehicle at the time of alert triggers. Unlike other datasets, IDD-CRS clips are distance-aware, as
they are formed based on ADAS alerts.

Dataset Action Categories Method of Clip Extraction

Pedestrian Vehicle Ego Vehicle Normal
Driving

Temporal
Boundary

Distance
Aware

Speed Aware

JAAD [1] ✓ ✗ ✗ ✗

PIE [2] ✓ ✗ ✗ ✗

ROAD [30] ✓ ✓ ✗ ✗ Manual ✗ ✗

DADA [13] ✓ ✓ ✗ ✗

HDD [3] ✗ ✓ ✓ ✗

METEOR [4] ✓ ✓ ✓ ✗

IDD-CRS ✓ ✓ ✓ ✓ ADAS ✓ ✓

driving to prevent or avoid an impending collision. Figure 1
shows the device installed in the car from our study. The device
has one AI-enabled camera (input) fitted on the dashboard of
the car and is focused toward the road at an optimum angle
to detect various features such as pedestrians, cyclists, lane
departure, chances of a collision, road features, and has a
display unit (output) which gives visual as well as audio alerts
to the driver while driving. To store the huge geotagged data
coming from the ADAS-equipped car, a centralized server is
used. Figure 2 shows the visual scenarios where ADAS trigger
alerts.

2) Camera: We used the DDpai X2S Pro RGB camera to
record video, positioning it next to the ADAS device as shown
in Figure 1. The camera captures front-facing footage at a
resolution of 2560x1440 with a frame rate of 25fps. It features
a lens system consisting of five optical lenses and one infrared
filter lens, providing a 140-degree field of view and an F1.8
aperture. This setup ensures clear, wide-angle video, delivering
the high-quality performance that meets the requirements of
our task.

B. Data Acquisition and Statistics

We collected data using a custom setup in our vehicle,
which was equipped with an ADAS system and an RGB
camera installed at the front. An image of this setup from
inside the vehicle is shown in Figure 1. The data collection
took place in Hyderabad, India, a city with a diverse range of
roads, from rural lanes to modern highways, providing diverse
driving scenarios. To capture different driving conditions, we
recorded data on various road types and at different times
of the day, including morning, afternoon, evening, and night.
Over 30 days, we accumulated approximately 90 hours of
driving footage, ensuring that the dataset reflects natural and
varied driving environments.

Each video recorded by the camera is one minute long,
resulting in a total of 5,400 one-minute videos and 135,000
frames. However, not all videos contain alert scenes. We
extracted specific clips where the ADAS triggered an alert.

Figure 2 explains the scenarios in which ADAS triggers alerts,
resulting in a total of 2,305 alert clips. These clips include
various alert types, with 261 clips for FCW, 281 for PCW,
789 for HMW, 485 for LDW, and 489 for NOA. Figure 4
shows the distribution of alert clips, while Figure 5 illustrates
the speed of the ego-vehicle when the alerts are triggered.

C. Clip Formation and Annotation

We extract clips based on the vehicle’s speed at the time
of the alert. For higher speeds, we capture longer distances,
and for slower speeds, we use shorter distances. Most clips
are 6 seconds long, including 3 seconds of footage before the
alert, 1 second during the alert, and 2 seconds after the alert.
The inclusion of 3 seconds of pre-alert footage is based on
the vehicle’s speed when the alert was triggered.

We collect data using ADAS detailing when each alert was
triggered and the vehicle’s speed at that time. This information
helps us match the alerts with their corresponding timestamps
in the video, allowing us to accurately extract the relevant
clips. For the ”No Obstacle Alert” (NOA) class, we randomly
select clips from the video that do not contain any alerts. This
method introduces hard negatives during training, helping the
model avoid overfitting to just the critical action classes and
improving its ability to effectively recognize critical actions.
Figure 3 shows frames from IDD-CRS dataset clips

D. Comparsion with existing dataset

Road safety-related classes are typically categorized into
vehicle, pedestrian, and ego-driver behavior. Existing datasets
often fall short in providing precise temporal information
needed to determine when these elements are at risk, focusing
primarily on pedestrian or ego-vehicle behavior with manually
annotated clips that can be inaccurate. Our dataset addresses
these gaps by leveraging ADAS for enhanced annotation
accuracy. It provides a more reliable basis for safety studies by
incorporating actions based on the distance between the ego
vehicle and other road users and accounting for vehicle speed
at the time of alerts. This approach ensures a comprehensive
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Fig. 3: Critical scenarios from IDD-CRS: (a) PCW; (b) FCW; (c) HMW; (d) LDW, with zoomed-in sections highlighting the
agents that triggered the alerts. The reasons for these alerts are detailed in Figure 2.
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Fig. 4: Distribution of video clips for the five different alerts
in the IDD-CRS dataset. FCW and PCW have fewer clips
compared to the other alerts, indicating a long-tail distribution
of data in IDD-CRS.

view of critical road scenarios and improves action recognition
precision.

Unlike datasets such as JAAD [1] and PIE [2], which
primarily focus on pedestrian safety with the assumption
that road agents are always vulnerable, our dataset captures
unsafe distances and triggers ADAS alerts, providing a more
accurate reflection of real traffic scenarios. While datasets
like ROAD [30], HDD [3], and METEOR [4] offer data for
action recognition, they often focus on ego-driver behavior
or interactions with other traffic agents. The DADA [13]
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Fig. 5: Speed distribution of the ego-vehicle at the moment
alerts are triggered in the recorded clips. IDD-CRS captures
critical scenarios across all speeds. Alerts are not considered
for speeds less than 20 km/h, as no agents are in danger at
such speeds. For speeds above 20 km/h, the speed is rounded
up to the nearest integer divisible by 10 (for this plot). Most
FCW and PCW alerts occur at speeds below 40 km/h, while
LDW alerts trigger at speeds above 50 km/h. HMW and NOA
alerts are present across all speeds.

dataset, on the other hand, consists of accident videos collected
from YouTube. Our dataset fills this gap by emphasizing
crucial aspects of road safety and leveraging ADAS for
precise temporal annotations, resulting in greater accuracy and
efficiency compared to manual methods. Because ADAS is



consistent in measuring the distance of an agent, while human
annotation varies based on different perspectives and is not
always accurate.Additionally, we include a No Obstacle Alert
(Normal Driving) class as a hard negative to help models
differentiate between routine driving and critical events. This
class represents scenarios where the ego vehicle maintains
a safe distance from surrounding road agents. A detailed
comparison of these aspects is shown in Table I.

IV. BENCHMARKS AND BASELINE RESULTS
We have discussed the dataset, the data collection process,

and the annotation. In this section, we present an extensive
analysis of IDD-CRS with existing methods to highlight the
diversity and usefulness of data. We first discuss the exper-
imental setup and then based on the evaluations, report the
understanding about the dataset properties and behavior of
different approaches.

A. Task on IDD-CRS dataset
Action Recognition: Given an action segment Ai =

[tsi, tei], we aim to classify the segment into its action class,
where classes are defined as Ca = {(cv ∈ CV , cn ∈ CN )},
and cn is the alert name. In IDD-CRS, we have five classes
FCW, PCW, HMW, LDW and NOA.

Long-tail action recognition: refers to the challenge of
classifying action classes that have a small number of clips
compared to more common classes. In this context, HMW,
LDW, and NOA have a large number of clips, making them
frequent classes, whereas PCW and FCW have a relatively
small number of clips, making them long-tail classes. Figure
4 shows the distribution of alert clips among different classes.

B. Evaluation Metric
We use the mean Average Precision (mAP) as the evaluation

metric. mAP is computed by averaging the Average Precision
(AP) across all N action classes. For each class, AP is
calculated as the area under the precision-recall curve, where
precision is measured at different recall thresholds. The mAP
formula is defined as:

mAP =
1

N

N∑
i=1

APi

where N is the total number of classes, and APi represents
the average precision for the i-th class. The higher the mAP
score, the better the model’s overall performance in distin-
guishing between different actions.

C. Data Augmentation
We apply rectangular cropping as a data augmentation

technique as shown in Figure 6. This process involves cutting
out a central rectangular area from the original image. By
focusing on a central portion of the image, this technique
reduces the impact of less relevant areas around the edges.
The result is a more focused dataset that can improve model
accuracy and robustness. This method is particularly effective
in emphasizing the central features of the image, which are
often the most important for classification and analysis.
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Fig. 6: Augmented image: The height is reduced to 0.5 times
the original height, while the left and right widths are each
reduced to 0.12 times the original width.

D. Baseline and Implementation Details

1) Action Recognition: We experimented with several well-
established video action recognition backbones using standard
training methods and cross-entropy loss. The backbones in-
cluded CNN-based architectures such as C3D [14], I3D [15],
X3D [17], SlowFast [16], and the transformer-based backbone
MotionFormer [18], all of which have shown considerable
success in general human action recognition tasks. The C3D
model was pre-trained on the Sports-1M and UCF101 datasets,
while the I3D model with a ResNet-50 backbone was pre-
trained on the Kinetics-400 human action dataset. Similarly,
the X3D model (x3d-m) and the SlowFast model, both
with ResNet-50 backbones, were pre-trained on Kinetics-400.
Lastly, the MotionFormer model, with a ViT backbone, was
pre-trained on the EpicKitchens-100 dataset. We fine-tuned
these pre-trained models on our IDD-CRS dataset to evaluate
their performance in recognizing complex driving behaviors.

2) Implementation Details: We conducted all experiments
on a system with four NVIDIA 3080Ti GPUs using Py-
Torch. We utilized the Adam optimizer and tuned the training
parameters for optimal performance while maintaining the
backbone inputs as specified in their respective papers. The
C3D model uses 16-frame clips at a 112×112 resolution, I3D
uses 64-frame clips at a 224×224 resolution, X3D (xmd-m)
uses 16-frame clips at a 256×256 resolution, SlowFast uses
32-frame clips at a 256×256 resolution with a SlowFast alpha
of 4, and MotionFormer uses 16-frame clips at a 224×224
resolution. We applied the frame augmentation techniques
described in Section IV-C and depicted in Figure 6, resulting
in performance improvements detailed in Section IV-E.

3) Action Recognition + Long tail Methods: Real-world
data, particularly in the traffic domain, often exhibits a long-
tail distribution. To address this characteristic, we conducted
extensive experiments with existing methods for long-tail
video classification. We used the best-performing backbone
results as our baseline and applied this top-performing back-
bone to these methods.

• CE (Cross-Entropy): The standard cross-entropy loss
function, trained using instance-balanced sampling. Each



instance in the dataset is treated equally during training,
without any adjustments for class imbalances.

• EQL (Equalization Loss) [20]: Like CE, this method
also uses instance-balanced sampling but introduces an
Equalization Loss. This loss function reduces the penal-
ties for incorrectly classifying head (frequent) classes as
tail (rare) classes, addressing class imbalance.

• cRT (Classifier Retraining) [24]: Classifier Retraining
is now a standard method in handling class imbalance. It
first trains the model using instance-balanced sampling,
then resets the classifier and re-trains it with class-
balanced sampling. This ensures the model pays equal
attention to both frequent and rare classes during classi-
fication.

• Mixup [28]: This technique combines pairs of training
samples and their labels. Mixing up the input data, helps
the model generalize better by introducing new training
examples that are weighted combinations of existing
ones.

• Framestack [29]: In this approach, video frames are
mixed based on a running total of class average preci-
sion. It aims to improve the overall precision of action
recognition tasks by giving weight to classes based on
their performance during training.

• Transfer-LMR [31]: A mixed reconstruction approach
uses pairwise feature similarities to reconstruct video
features, with few-shot samples excluded. Pairwise label
mixing enhances feature diversity by combining video
samples within a batch. The reconstructed and mixed
features are passed to the classifier, improving the recog-
nition of underrepresented classes.

E. Results and Analysis

Our experiments with various video backbones reveal that
the performance of these models differs significantly under dif-
ferent conditions. As shown in Table II, which presents results
without data augmentation, the SlowFast backbone achieves
the highest overall mAP of 67.7, excelling particularly in the
LDW and NOA categories. This demonstrates its superior
capability in handling complex scenarios, despite the lack
of data augmentation. Other backbones like X3D and C3D
also show strong performance but do not surpass SlowFast in
overall effectiveness for the given categories.

Table III displays the performance of the same video back-
bones with data augmentation. Here, the SlowFast backbone
again stands out, achieving the highest overall mAP of 70.9,
which is a 3.3 gain from SlowFast without augmentation.
This indicates that data augmentation significantly enhances
model performance, allowing SlowFast to perform better
across various action categories. All other backbones also
benefits from data augmentation. I3D and X3D also benefit
from data augmentation, but the SlowFast model consistently
outperforms the others in both overall mAP and category-
specific performance.

Further analysis of long-tail methods applied to the Slow-
Fast backbone, as shown in Table IV, highlights several

advancements. The SlowFast model with the LMR training
method increases the mAP from 70.9 to 72.0, representing a
gain of 1.1. However, there is no significant improvement in
the long-tail classes FCW and PCW. The cRT method shows
a gain of 1.8 in mAP for the PCW class but underperforms
in other classes. Overall, while the LMR method boosts the
model’s overall performance, it does not significantly improve
performance for the long-tail classes compared to the baseline.

We also tested our baseline model on the lane change class
(Right / Left Lane Change) of the HDD dataset, as this was the
only class in the existing datasets that matched our labels. The
Average Precision for lane changes in HDD was recorded as
76.3. Despite the differences in data distribution, as HDD was
collected in a structured environment, our model performed
well. This demonstrates that the proposed dataset and model
can be effectively applied to any geographical area.

TABLE II: Baseline results for action recognition without
data augmentation

Video Backbone FCW PCW HMW LDW NOA Overall
mAP

I3D [15] 39.2 66.5 70.1 83.3 48.9 61.6

Slowfast [16] 39.4 77.6 76.9 89.1 55.7 67.7

X3D [17] 45.5 72.2 73.3 90.9 52.7 66.0

C3D [14] 56.6 67.8 73.0 86.7 50.4 66.9

Motionformer [18] 46.9 62.4 64.1 62.6 29.3 53.0

TABLE III: Baseline results for action recognition with data
augmentation

Video Backbone FCW PCW HMW LDW NOA Overall
mAP

I3D 50.8 78.8 69.8 90.2 57.8 69.5

Slowfast 51.2 77.2 75.8 92.4 57.9 70.9

X3D 56.0 76.7 80.2 87.3 45.1 69.1

C3D 59.1 68.5 77.3 86.6 41.0 66.5

Motionformer 45.6 67.4 61.5 67.7 34.8 55.4

TABLE IV: Performance of the best video backbone, enhanced
with various Long-tail Methods.

Backbone Method FCW PCW HMW LDW NOA mAP

Slowfast CE 51.2 77.2 75.8 92.4 57.9 70.9

Slowfast EQL 48.4 76.8 69.2 91.2 53.4 67.8

Framestack 50.6 73.1 76.0 92.4 58.2 70.1

cRT 53.0 73.1 77.4 93.2 60.0 71.3

Mixup 50.2 74.6 78.5 94.4 59.1 71.4

Transfer-LMR 51.3 77.3 78.0 93.6 59.9 72.0

V. CONCLUSION

In conclusion, the IDD-CRS dataset addresses critical gaps
in road safety research by incorporating both vehicle and



pedestrian behaviors in diverse, high-risk traffic scenarios.
By utilizing ADAS for accurate temporal annotations, this
dataset offers a more reliable foundation for safety analysis
compared to manually annotated datasets. With 90 hours
of video footage comprising 5,400 one-minute videos, our
dataset includes 135,000 frames and 2,305 clips capturing
critical driving scenarios, IDD-CRS provides a comprehen-
sive view of road interactions, including newly introduced
vehicle-related classes and hard negative examples to enhance
model robustness. Our benchmarks on action recognition and
long-tail methods highlight the current limitations of existing
models, underscoring the need for continued improvements in
road safety technology. This dataset sets the stage for future
innovations aimed at mitigating risks for all road users.
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